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Online bipartite matching

• Offline set U = 	 {u!, … , u"} fixed and known
• Online set V = 	 {v!, … , v"} arrive one by one
• When an online vertex v# arrives
• Its neighbors N v!  are revealed
• We have a make an irrevocable decision whether, 

how, to match v! to something in N v!
• Final offline graph G∗ = (U ∪ V, E)
• E = N v" ∪⋯∪ N v#
• Maximum matching M∗ ⊆ E of size M∗ = n∗ ≤ n
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v4Produce a matching M such that the resulting 
competitive ratio %

%∗  is maximized

Goal of online bipartite matching problem

For this talk, let’s treat n∗ = n

Here, the ratio is 3/4
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What is known?

[KVV90] Richard M. Karp, Umesh V. Vazirani, Vijay V. Vazirani. An optimal algorithm for on-line bipartite matching. Symposium on Theory of Computing (STOC), 1990

(Expected) Competitive ratio

Deterministic algorithm
1
2

Deterministic hardness
1
2

Randomized algorithm 1 − !
"
    [KVV90]

Randomized hardness 1 − !
"
+o(1)    [KVV90]

Greedy

Ranking

• The Ranking algorithm [KVV90]
• Pick a random permutation π over the offline vertices U
• When vertex v! arrive with N v! , match v! to the smallest indexed (with 

respect to π) unmatched neighbor

min
!

min
"!#	%&&'(%)	
#*+,*-.*

Expected 	number	of	matches
n∗
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What if there is additional side information?

• Learning-augmented algorithms
• Designing algorithms using advice, predictions, etc.

• α-consistent: α-competitive with no advice error
• β-robust: β-competitive with any advice error

• Example: Binary search with advice
• Want to find a word in an n page dictionary, say it is on page x∗
• Classical binary search: O(log n) queries possible and worst case necessary
• If someone provides an advice page 7x, O log x∗ − 7x  queries is possible
• Here, “best possible” is directly going to page x∗

• So, this algorithm is 1-consistent and O log n -robust since x∗ − 7x ≤ n

A natural goal is to design an algorithm with 𝛼 = 1 
while 𝛽 being the best possible classically

3



Research question

• If we have “perfect information” about G∗, can we get n∗ matches?

• Also, we know that Ranking achieves competitive ratio of 1 − !
'

Can we get an algorithm that is both
1-consistent and 1 − !

"
-robust?
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Prior related attempts

• [AGKK20] Prediction on edge weights adjacent to V under an optimal offline matching
• Random vertex arrivals and weighted edges
• Require hyper-parameter to quantify confidence in advice, so their consistency/robustness 

tradeoffs are not directly comparable
• [ACI22] Prediction of vertex degrees "d u! , … , "d u"  of the offline vertices in U

• Adversarial arrival model
• Optimal under the Chung-Lu-Vu random graph model [CLV03]
• Unable to attain 1-consistency in general

• [JM22] Advice is a proposed matching for the first batch of arrived vertices
• Two-staged arrival model [FNS21], where best possible robustness is ¾
• For any R ∈ 0,¾ , they can achieve consistency of 1	 − 1	 − 1 − R

#

• [LYR23] Augment any “expert algorithm” with a pre-trained RL model
• For any ρ ∈ [0,1], their method is ρ-competitive to the given “expert algorithm”

[AGKK20] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online matching problems with machine learned advice. Neural Information Processing Systems (NeurIPS), 2020
[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching with Degree Information. Neural Information Processing Systems (NeurIPS), 2022
[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences (PNAS), 2003
[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-consistency tradeoffs for the two-stage model. Neural Information Processing Systems (NeurIPS), 2022
[FNS21] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching with application to ride hailing. Symposium on Discrete Algorithms (SODA), 2021.
[LYR23] Pengfei Li, Jianyi Yang, and Shaolei Ren. Learning for edge-weighted online bipartite matching with robustness guarantees. International Conference on Machine Learning (ICML), 2023 5
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Do not yield an algorithm that is both
1-consistent and 1 − !

"
-robust
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Our first main result

• Extends to (1 − a)-consistent and !
(
+ a -robust, for any a ∈ 0,½ .

• Proof sketch (for a = 0 case):
• Restrict G∗ to be one of two possible graphs (next slide)
• Any advice is equivalent to getting 1 bit of information
• In first #

&
 arrivals, no algorithm can distinguish between the two graphs

• Any 1-consistent algorithm must behave as if the advice is perfect initially 

With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

(
 -robust, regardless of advice

Impossibility result (Informal)

6



With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

( -robust, regardless of advice

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

u5

u6

u1

u2

u3

u4

v1

v2

v3

u5

u6

7



With adversarial vertex arrivals, no algorithm can be both
1-consistent and > !

( -robust, regardless of advice

Impossibility result (Informal)

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

u1

u2

u3

u4

v1

v2

v3

v4

v5

v6

u5

u6

7



Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

EasierHarder

Easier models can achieve 
higher competitive ratios

[M13] Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Computer Science, 2013 8



Hierarchy of arrival models [M13]

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

Worst case G∗

Worst case 
arrival sequence

Arrival 
sequence is a 

random 
permutation

Each online vertex is drawn 
from some type distribution 
𝒟: 2' → ℝ in an IID fashion

𝒟: 2' → ℝ 
unknown

𝒟: 2' → ℝ 
known
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What is known?
Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID

(Expected) Competitive ratio

Adversarial arrival Random order arrival

Deterministic 
algorithm

1
2

1 − !
"
 [GM08]

Deterministic 
hardness

1
2

3
4

Randomized 
algorithm 1 − !

"
 [KVV90] 0.696 [MY11]

Randomized 
hardness 1 − !

"
+o(1) [KVV90] 0.823 [MGS12]

Greedy

Ranking

[GM08] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications to Adwords. Symposium on Discrete Algorithms (SODA), 2008
[MY11] Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An Approach Based on Strongly Factor-Revealing LPs. Symposium on Theory of Computing (STOC), 2011
[MGS12] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online stochastic matching: Online actions based on offline statistics. Mathematics of Operations Research, 2012 9



Research question

• Let 𝛽 denote the “best possible competitive ratio”
• Our first result says: This is not possible for adversarial arrivals!
• What about random order arrivals?

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

Adversarial ≤ Random order ≤ Unknown IID ≤ Known IID
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Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽
• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust
• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio 
interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽

e.g. use 
Ranking
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Realized type counts as advice

• Classify online vertex in G∗ = (U ∪ V, E) based on their types
• Type of v! is the set of offline vertices in N v!  are adjacent to [BKP20]

• Define integer vector c∗ ∈ ℕ() indexed by all possible types 2)
• c∗ t  = Number of times the type t ∈ 2* occurs in G∗

• Define T∗ ⊆ 2) as the subset of non-zero counts in c∗
• Note: T∗ ≤ n ≪ 2 * = 2#

• Advice is simply an estimate vector ?c which approximates c∗
• Let GT be non-zero counts in 7c. Similarly, we have GT ≤ n
• Can represent 7c using O n  labels and numbers

[BKP20] Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study of algorithms for online bipartite matching. Journal of Experimental Algorithmics (JEA), 2020 12
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Realized type counts as advice

u1

u2

u3

u4

Type c∗

{u", u&, u+} 2

{u", u,} 1

{u&, u,} 1

2* ∖ T∗ 0

T∗

Here, T∗ = 3 ≪ 2+ = 16
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The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching GM on the graph defined by advice 7c
• Try to mimic edge matches in GM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size GM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever GM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗

{u0, u1, u2} 2

{u0, u3} 1

{u1, u3} 1
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	+ 0 − 1 + 1 − 0 + 0…  
= 4 
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The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching GM on the graph defined by advice 7c
• Try to mimic edge matches in GM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size GM − -" .∗,0.
&#

• Mimic beats an advice-free Baseline whenever GM − -" .∗,0.
&#

> β ⋅ n

u1

u2

u3

u4

Type c∗ *c

{u0, u1, u2} 2 3

{u0, u3} 1 0

{u1, u3} 1 0

{u0, u1, u3} 0 1

Produced matching size
= 2 = GM − -" .∗,0.

&

L" c∗, 7c  
= 3 − 2 + 0 − 1 	
	+ 0 − 1 + 1 − 0 + 0…
= 4 

Error is “double 
counted” in L0
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The Mimic algorithm

• Algorithm
• Fix any arbitrary maximum matching GM on the graph defined by advice 7c
• Try to mimic edge matches in GM while tracking the types of each arrival
• If unable to mimic, leave arrival unmatched

• Analysis
• 0 ≤ L" c∗, 7c ≤ 2n measures how close 7c is to c∗

• By blindly following advice, Mimic gets a matching of size GM − -" .∗,0.
&

• Mimic beats an advice-free Baseline whenever GM − -" .∗,0.
&

> β ⋅ n

• Mimic beats an advice-free Baseline whenever -" .
∗,0.
#

< 2(1 − β)

For this talk, let’s treat GM = n
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How to test advice quality?

• Define p = *∗

"
 and q = +*

"
	 as distributions over the 2) types

• [VV11, JHW18]: Can estimate L! p, q 	"well" using o n  IID samples
• To be precise, if p and q have domain size r ≤ n, then Θ 1

2# 345 1
 IID samples 

sufficient and necessary to estimate [L" such that [L" − L" p, q ≤ ε
• c∗ and 7c can be defined over GT + 1 elements with a “not in GT” bucket

Insight: Use sublinear property testing to estimate L! c∗, ,c !
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How to test advice quality?

• Define p = *∗

"
 and q = +*

"
	 as distributions over the 2) types

• [VV11, JHW18]: Can estimate L! p, q 	“well” using o n  IID samples
• Some adjustments needed to apply this property testing idea to our online 

bipartite matching setup, but it can be done (talk to me to find out more)

[VV11] Gregory Valiant and Paul Valiant. The power of linear estimators. Foundations of Computer Science (FOCS), 2011.
[JHW18] Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance. IEEE Transactions on Information Theory, 2018.

Insight: Use sublinear property testing to estimate L! c∗, ,c !
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The TestAndMatch algorithm

• Algorithm
• Fix any arbitrary maximum matching GM on the graph defined by advice 7c
• Run Mimic while testing quality of 7c by estimating L" c∗, 7c
• If test declares L" c∗, 7c  is “large”, use Baseline for remaining arrivals
• Otherwise, continue using Mimic for remaining arrivals

• Analysis
• If [L" ≲ 2 1 − β , then TestAndMatch attains ratio of at least 1	 − -" .∗,0.

&#
• Otherwise, TestAndMatch attains ratio of at least β ⋅ 1 − o 1
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Our second main result

• Our method is a meta-algorithm that uses any Baseline that achieves 𝛽
• So, we are simultaneously 1-consistent and 𝛽 ⋅ 1 − 𝑜 1 -robust
• For random arrival model, we know that 0.696 ≤ 𝛽 ≤ 0.823

With random order, there is an algorithm achieves competitive ratio 
interpolating between 1 and 𝛽 ⋅ 1 − 𝑜 1 , depending on advice quality

Goal achievable in random order (Informal)

Can we get an algorithm that is both 1-consistent and 1 − "
(

-robust?
𝛽
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Conclusions and future directions

• Our paper also discussed some practical considerations while using the given advice (c
• Can our ideas such as using property testing extend to other versions of online bipartite 

matching and other online problems with random arrivals?
• We suspect it extends with suitably chosen advice and quality metrics, e.g. Earthmover distance?

• Is there a smarter way using advice other than Mimic, leaving some arrivals unmatched? 
• [FMMM09] constructed two matchings to “load balance” in the known IID setting
• In semi-online model, [KPSSV19] mimic matching on known arrivals and Ranking on adversarial arrivals

• Message to the learning-augmented community: Beyond consistency and robustness?
• TestAndMatch's guarantees is based on L0 over the type histograms
• This is sensitive to certain types of noise, e.g. 7c obtained after Erdős–Rényi edits to the offline graph G∗

• We expect large L0 in practice, but notions of advice practicality are not formally considered under the 
standard framework of consistency and robustness

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online stochastic matching: Beating 1-1/e. Foundations of Computer Science (FOCS), 2009.
[KPSSV19] Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-Online Bipartite Matching. Innovations in Theoretical Computer Science (ITCS), 2019.

Thank you for your kind attention!
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I’m on the 
job market!


